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I. INTRODUCTION

Simplified dynamic models have found a wide diffusion
in the research community of legged locomotion thanks to
the good trade-off between descriptive accuracy and compu-
tational cost that they guarantee.

Among the most successful templates we can recall the
Linear Inverted Pendulum (LIP) model and the Spring
Loaded Inverted Pendulum (SLIP) model. Each of these
templates, coupled with a suitable stability criterion such
as the Zero Moment Point (ZMP) [1], the Capture Point
(CP) or the limit cycle stability analysis, has represented a
critical improvement towards the understanding of human
locomotion and a step forward towards the realization of
more and more natural gaits of legged robots.

The above mentioned templates focus on the balancing
problem intended as a fight against gravity: the main goal is
to accomplish the desired velocity, considering the unilateral
nature of the contact forces.

II. FEASIBILITY CONSTRAINTS

Such simplified models, however, ignore other physical
phenomena that might hinder the motion execution such as
the friction coefficients, the kinematic joint limits and the
actuators limits. When one of these constraints is violated, in-
deed, the corresponding physical quantity is usually saturated
to its maximum feasible value (maximum constant force in
the case of the contact forces violation, maximum position
in the case of the joint position limits or maximum torque in
the case of the joint torque limits). If the feedback controller
is not aware of such limits, this will result in an undesired
feedforward control action (saturated constant input) and in
a potential failure of the all motion plan.

These feasibility constraints have been considered at the
control level in multiple manners, mainly resorting to the
full kinematics of the system [2]. However, we still miss
the ability to devise online motion plans that can verify
these constraints over longer horizons and possibly adapt the
plans according to these requirement with large notice, hence
the need of resorting to offline machine learning [3]. With
the increasing complexity of the motions that our robot are
expected to perform, taking these restrictions into account
sufficiently in advance becomes of even greater importance.
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Fig. 1. The mapping between joint torques and end effector forces. In this
example the dimension of the torques space dim(T ) = n = 3 is equal to
the dimension of the manifold of the contact forces dim(P) = m = 3.

In the following section of this manuscript we focus on
the problem of joint actuation limits and we describe the
properties of the actuation polygons, or force polygons, and
how they can be obtained.

III. ACTUATION POLYGONS

The dynamic equation of motion can be expressed in the
following generalized form:

M(q)q̈+ c(q, q̇) + g(q) = τ + JT
s (q)f (1)

which includes both the Degrees of Freedom pf the unactu-
ated floating base and the actuated joints. The same relation
can be expanded in two lines in order to explicitly highlight
these two terms:[
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We now deliberately neglect the first line (related to the
floating base) and thus discard the coupling term JT

sb that
describes the interaction among the legs.

In this way we can then rearrange Eq. 2 above to explicitly
express the contact forces f :

f = JT#

j (M(q)q̈+ c(q, q̇) + g(q)− τ )︸ ︷︷ ︸
h(q,τ )

(3)

The definition of the function h(q, τ ) may vary depending
on the assumptions we take about the motion. For example
we may assume a quasi-static motion (q = q̇ = 0) and we
would then get in this way: h(q, τ ) = g(q)− τ .

In the next paragraph we will deal with the problem of the
inversion of the transposed leg Jacobian JT

j term and treat it
into two different ways depending on the legs redundancy.
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Fig. 2. Representation of the friction cone Cj and actuation polygon Pj on
one foot of the HyQ robot (j is the leg index). The purple arrows represent
the contact forces.

A. Inversion of the Transposed Jacobian term

For each branch j of the floating base system we have a
limb Jacobian matrix JT

j ∈ Rn×m where n is the number of
actuated joints of limb and m is the dimension of the contact
wrench at the end effector.

For non redundant limbs (n = m) the matrix JT
j is

invertible and thus JT#
j corresponds to the inverse of JT

j .
Eq. (3) can be written in this case as: f = J−T

j h(q, τ ).
In the generic case of redundant limbs, however, we have

that n > m and JT
j is not invertible. One first option in this

case consists in using the Moore-Penrose pseudo-inverse:

JT#

j = ((JT
j Jj)

−1JT
j )

T = Jj(J
T
j Jj)

−T (4)

This choice corresponds to minimizing ||JT
j f − τ ||22. This

quantity will be zero, and thus the inversion given by Eq.
(4) will be accurate, only if the joint torque/force τ belongs
to the pre-image of JT

j , i. e. τ ∈ Im(JT
j ).

As an alternative, the method proposed in [4], for the
case of redundant manipulators, consists in solving, at most,

2n!
(2n−m)!m! systems of linear equations in order to find the
set of force polytope vertices that make sure the joint torques
respect this condition.

B. Actuation polygons computation

So far we have explained how a set of joint torques can be
mapped into an equivalent contact force at the end-effector.
We can now use Eq. (3) to compute the maximum and
minimum contact forces that the i− th limb can exert on the
environment, considering its own actuation limits:

f limi = JT#

j · h(q, τ lim
i ), i = 1, . . . 2n (5)

τ lim
i ∈ Rn is a vector containing a combination of upper and

lower bounds of the joint torques (see Fig. 1). The resulting
2n values of f limi represent the vertices of the force/actuation
polygon Pi of the considered limb:

Pj =
{
f ∈ Rm | f = JT#

j · h(q, τ ), τ ∈ T
}

(6)

The actuation polygon Pj can then be intersected with the
friction cone Cj to obtain the set of all the contact forces that

simultaneously respect both the friction cone constraints and
the joint actuation limits of the j − th limb (see Fig. 2).

Examples of how such quantities can be exploited in the
field of Model Predictive Control and motion planning can
be found in [5] and [6].

IV. SIMPLIFIED DYNAMIC MODELS
The actuation polygons can be used to capture phenomena

which cannot otherwise be observed by the friction cones
alone. These phenomena include the relation between foot
placement and the maximal contact force that the robot can
exert on the ground and how the configuration affects this.

In [6] we have shown that the actuation polygons can
be used to map the joint force/torque limits into Actuation
Wrench Polytope (AWP) constraints to restrict the overall
wrench acting on Center of Mass (CoM) of the robot. The
used method is comparable to the way friction cones can
be mapped into Contact Wrench Cone (CWC) constraints to
limit the overall wrench allowed to act on the robot [7].

Combined, for example, with the use of centroidal dy-
namics [8], CWC and AWP constraints represent a solid
example of how actuation polygons can be employed for
the definition of new control and motion planning policies
for legged robots.

V. CONCLUSION
In this manuscript we have described the required steps

for the computation of the actuation polygons and the strong
analogies with the well known friction cones.

We believe that the force polygons represent an important
tool that we may exploit in the future for the definition of
new simplified dynamic models and for the generation of
more physically feasible motion plans for legged robots.
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